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Abstract

The interrelation between electronic energy loss and charge states of ions in 
solids is analyzed with particular attention to the cases of hydrogen and heavy 
ions. Different theoretical schemes and empirical evidences are discussed. 
Various approaches to describe the behavior of slow protons in metals are 
reviewed and compared with alternative experimental evidences obtained with 
other subatomic projectiles. Recent developments in theoretical evaluations of 
the energy loss of heavy ions using non-perturbative methods are compared 
with previous linear approaches using different ion charge models. Important 
differences in the ion charges assumed in previous models are explained by the 
influence of saturation effects which are absent in the linear and perturbative 
methods (and contained in the non-linear approach).
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1. Introduction

The question of the energy loss of light and heavy ions in solids is intimately 
connected with the question of the charge state of the ions inside the medium. 
The two problems have been present in the studies of ion penetration in matter 
for many years (Betz, 1972; Kumakhov and Komarov, 1981). The early devel
opments based on classical and quantum perturbation theory provided close 
analytical expressions for the mean energy loss only for the case of bare ions, 
but nevertheless have served for qualitative analysis and applications in various 
fields. The recent books by Sigmund (2004, 2006) together with an ICRU Report 
(2005) provide a very complete coverage of the field.

In this context, it is also a nice opportunity to make a special recognition in 
these Proceedings to the masterful contribution done by Peter Sigmund along 
many years in almost all the fields of ion-matter interactions covered in this 
volume.

For many years, the problem of dressed ions was approached from the per
spective of statistical atomic models (Firsov, 1959; Lindhard and Scharf, 1953; 
Yarlagadda et al., 1978) and also by the introduction of effective charge models, 
where the emphasis was more on providing phenomenological scaling properties 
than formulating a complete theory of the complicated process of electronic en
ergy loss of partially stripped ions. The greatest difficulties appeared of course 
in the case of heavy ions. In particular, the range of low energies proved to be 
much more complex than the statistical models predicted as clearly evidenced by 
the discovery of the oscillatory Z\ dependence of the stopping coefficients for 
different ions (Ormrod and Duckworth, 1963; Ormrod et al., 1965).

Important advances were made in more recent years with the development of 
non-perturbative methods that include in the calculations terms of all orders in 
the interaction strength (Briggs and Pathak, 1973, 1974; Echenique et al., 1981, 
1986, 1990; Grande and Schiwietz, 1991, 1993, 2002; Maynard et al., 2000, 2002; 
Sigmund and Schinner, 2000, 2002; Lifschitz and Arista, 1998; Arista, 2002). In 
various ways, these non-perturbative approaches hinge on nearly exact calcula
tions of the energy loss either by directly solving Schrodinger’s equation or by 
using alternative methods of approximation. In these approaches, the charge state 
of the ion plays a determinant role as a relevant input parameter.
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While these aspects have been studied for a long time, various fundamental 
issues are still not properly understood. Different approaches have been proposed, 
but problems still remain and discrepancies between different views are important; 
this situation affects both light and heavy ions. In this work I will discuss the 
current state of the knowledge on some relevant questions concerning the charge 
state of ions moving in solids and its relevance to the stopping power problem. 
Following a usual convention, I will distinguish between light (hydrogen and 
helium) and heavy ions (everything heavier than helium). The discussion of light 
ions, however, will be centered on the case of hydrogen, since helium does not 
present significant problems compared with the rest of the cases.

2. Light Ions: The Case of Hydrogen

In spite of being the simplest case of a free ion, the question of protons moving 
in solids is one of the most elusive ones. The existing pictures for slow hydrogen 
in metals go from the simplest view of the protons remaining as unbound point 
particles, strongly screened by the conduction electrons, to the opposite extreme of 
considering the proton binding two electrons and forming H~ as the stable system 
for low energies. To try to understand the difficulties and subtleties encountered 
in this area it is useful to review some of the ideas and discussions that took place 
in the last three decades.

About 30 years ago Brandt (1975) conjectured that a proton would not be able 
to bind an electron in a metal due to the strong screening conditions. This conjec
ture was based on theoretical evidences of the time (Friedel, 1952, 1954, 1958; 
Langer and Vosko, 1959; Payne, 1970; Rogers et al., 1970). In particular, exact 
calculations of the effects of screening on the bound states of hydrogenic systems 
by Rogers et al. (1970), showed that, for the typical screening distances in metals, 
a bound state of hydrogen would not be possible. While the analysis for protons 
at low energies was reasonably well supported on physical grounds, the extension 
of the same picture to protons at all energies was not obvious. These conclusions 
were then objected by Cross (1977) who analyzed the case of swift protons and 
gave arguments to support the view of collisional equilibrium between protons and 
neutral hydrogen, dynamically connected by capture and loss processes. It should 
be noted that the criticism by Cross in principle does not apply to slow protons, as 
it presumes a dynamical decoupling between projectile and target states (ignoring 
also screening effects that play a dominant role at low energies) using a picture 
that is appropriate for swift ions.

Later on, and from a different perspective, self energy calculations based on 
a dielectric model (Guinea et al., 1981, 1982) predicted that both hydrogen and 
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helium in metals would be neutralized at low energies. It may be noted however 
that one should take these results with caution since the use of perturbative models 
for velocities below one atomic unit is quite risky (Mann and Brandt, 1981).

A different view emerged in the following years (Penalba et al., 1992), inspired 
by the new methods of density functional theory (Hohenberg and Kohn, 1964; 
Kohn and Sham, 1965). According to this view, the ground state of hydrogen in 
metals (represented by a jellium model) would be a state with two bound electrons, 
resembling H~. This rather unexpected picture (considering the very low binding 
energy of H~ in vacuum, Eo ~ 0.75 eV) emerged from the analysis of the eigen
values of the Kohn-Sham equations which arise in the density functional theory 
when the wavefunction of the total system is represented by a Slater determinant, 
using an independent particle approach (but including exchange and correlation 
effects in the effective potential through a local approximation). In this repre
sentation, an eigenvalue corresponding to a doubly occupied Kohn-Sham state 
with an energy slightly below the bottom of the conduction band is obtained. The 
interpretation of this eigenvalue as an evidence of a real physical state of H is, 
however, a doubtful point, since, as is well known, the only physically meaningful 
quantity in density functional theory is the density itself. In particular, there is a 
specific mention that the KS eigenvalues do not represent the actual energies of 
the real system (Sham and Kohn, 1966).

One of the shortcomings of the jellium model is the failure of including lat
tice structure effects. While these effects may not be extremely important for the 
description of static interstitial ions, they may become of paramount importance 
for moving ions. A more complete picture that includes both band structure and 
lattice structure effects is the one given by the linear-muffin-tin-orbital (LMTO) 
or related formulations (Vargas et al., 1986; Vargas and Christensen, 1987). An 
illustrative picture emerging from these studies is shown in Figure 1. The figure 
illustrates the localized state around the proton, which is located in an interstitial 
position within the lattice. Here we should call the attention on two points. First, 
the density of states shown on the right-hand scale shows that the localized state 
is degenerate in energies with the unlocalized states of the conduction band. This 
is typically the case for screening of ionized impurities (or scattering resonances) 
rather than a bound state. The physical image that emerges from these calcula
tions is that of a strongly screened, or overscreened, proton with a non-integer 
value of screening charge larger than 1 (note that the excess screening charge 
is compensated at larger distances by Friedel oscillations). Secondly, we note 
the shape of the effective lattice potential in this figure, which, although quali
tative, is representative of the real behavior predicted by extensive calculations 
(Vargas and Christensen, 1987). It produces important energy barriers that break



MfM 52 Charge States and Energy Loss 599

E

Figure 1. Illustrative picture of the properties of the localized states around protons in metals 
according to band structure calculations by (Vargas et al., 1986; Vargas and Christensen, 1987).

the translational symmetry assumed in the jellium model. Because of these poten
tial barriers, the possibility of bound electrons following adiabatically the motion 
of the ion through the solid is ruled out. The wavefunction of the localized states 
will suffer scattering by the potential barriers and will be dispersed, leaving the 
proton as a single ion moving through the solid (subject to the strong screening 
by the free electrons).

Going back to the historical summary, it should be mentioned that while some 
calculations have stressed the picture of three ionic components (H+, 7/°, H~) 
most of the calculations have used the standard view of two charge states: H(} 
and H+ (Guinea et al., 1981, 1982; Lakits et al., 1990; Alducin et al., 2003); the 
most complete non-linear screening and stopping calculation for protons using the 
jellium model is the one made by Salin et al. (1999) including dynamical effects 
for slow ions.

While the intention of this paper is not to give a final conclusion on these 
intricate questions, it may be useful to perform a simplified but physically reveal
ing analysis of the problem on the basis of recent approaches emerging from self 
consistent models of proton-solid interactions, including the relevant question of 
non-linear treatments of screening and scattering processes.

Following a previous proposal (Lifschitz and Arista, 1998), the interaction 
between the proton and the free electron gas will be approximated by an effective 
(self consistent) model potential V(r) which, for analytical convenience, will 
take either of the following forms:
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Figure 2. Energy eigenvalues, in atomic units, corresponding to the 15 state of three screened 
potentials: Hydrogenic, Hulthén and Yukawa, as a function of the screening parameter a, obtained 
by numerical solution of the Schrôdinger equation. The rescaled points for the Yukawa potential are 
obtained by multiplying the corresponding a values by a fixed factor 1.7.

(a) Yukawa potential:

e2
V(r) =----- e"“r,

r
(b) Hydrogenic potential,

V(r) = -y(l+a0

(c) Hulthén potential

First I consider the question of determining the conditions for the existence 
of bound states in the indicated potentials, taking as a parameter the screening 
constant a. To this end, I have solved by numerical methods the corresponding 
Schrôdinger equation, obtaining the energy eigenvalue for the ground (Is) state as 
a function of a. Note that only for the Hulthén potential there are exact analytical 
solutions, both for the wavefunctions and energies (Hulthén, 1942). The results 
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of the calculations are shown in Figure 2. It is observed that as the equivalent 
screening distance, A = 1/a, decreases (a increases) the state becomes more 
loosely bound and finally disappears. This occurs for values of a close to one 
atomic unit, and hence in the range of screening conditions in real metals. As a 
guide, a first approximation to the value of the screening constant for fixed impuri
ties in a free electron gas is given by the Thomas-Fermi (or RPA) approximation 
as aRPA = V3a)p/vF, where a>p and vF are the plasma frequency and Fermi 
velocity of the electron gas. Introducing the usual rs parameter of the electron gas 
by (47r/3)rs3n = 1, in terms of the electron density n, the value of û?RpA is given 
by ûfRpA = 1.563/^/77 a.u. (in the following the values indicated by a.u. refer to 
atomic units).

However, this value is not a very good one from the point of view of a non
linear representation of impurity screening in solids. A more appropriate value of 
a is the one that may be obtained in a self-consistent way by applying the Friedel 
sum rule (Friedel, 1952). This rule expresses the condition of overall charge neu
trality when an impurity is immersed in a metal. The mathematical condition is 
expressed in terms of the scattering phase shifts 5/ (corresponding to the scattering 
of electrons at the Fermi surface) by 

2j2' + 1)5,fc) = I, (1)

where kp = 1.919/rs is the Fermi wavenumber.
In a full non-linear representation of the screening problem the phase shifts are 

calculated by numerical integration of the Schrôdinger equation corresponding to 
the scattering of partial waves with angular momentum I in the self-consistent 
potential V(r). The maximum value of £ required in this sum (£max) depends on 
the value of rs, and it has been numerically determined for each rs so as to obtain 
an accuracy better than 10-5 in the total sum.

The resulting values of a obtained from this procedure for each of the indi
cated potentials are plotted in Figure 3 as a function of rs. In the case of the 
hydrogenic potential the present result coincides with calculations by Apagyi and 
Nagy (1987).

By combining the results of the two previous figures we obtain the expected 
values of binding energy for static protons, as a function of rs; the results are 
shown in Figure 4. In the case of the Hydrogenic potential this procedure yields 
no bound states for any value of rs. Moreover, the figure shows a very restricted 
window of possible rs values, and also, the values of binding energies are so 
small that they almost preclude the possibility of bound states at any density. 
These results, although mathematically correct, are physically misleading, as it
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Figure 3. Values of the screening constant a calculated from the Friedel sum rule as described in 
the text, for the three model potentials: Hydrogenic, Hulthén and Yukawa versus the electron gas 
parameter rs.

Figure 4. Binding energy of Is state around protons in a jellium taking into account the values of 
the screening constant a that satisfies the Friedel sum rule (Figure 3) and the energy of the bound 
state for the corresponding values of a (Figure 2). No bound states are obtained in the case of the 
Hydrogenic potential (note also the very small values of binding energies obtained here).
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becomes obvious when considering the high rs limit. It is physically clear that 
for a dilute electron gas the ground state of the system should be that with one 
electron captured by the proton in a hydrogenic bound state. However this limit is 
not obtained with the present approach. A nice physical discussion of the problem 
was given some time ago by Ferrell and Ritchie (1977). They identify the origin 
of the problem in the absence of an important many-body effect that comes from a 
self interaction of the electron mediated by the polarization induced in the electron 
gas by the same individual electron. In order to take into account this effect they 
formulated a simple model, using still a one-electron Hamiltonian, and showing 
that the new result reproduces the bound state with the correct binding energy of 
the free hydrogen atom when rs —> oo. (The original calculations by Ferrell and 
Ritchie were made for helium ions but it is easy to check using their analytical 
expressions that the same property applies to protons).

Nevertheless, in the range of metallic densities the Ferrell-Ritchie approach 
would not guarantee a bound state for protons since one should add a correction 
term to the energy due to the difference between the Fermi and the vacuum level 
(i.e., the work function value) (Ferrell and Ritchie, 1977).

As indicated, the calculations mentioned so far were restricted to the case of 
ions at rest. Therefore, the possibility arises that by considering the relaxation of 
the screening conditions due to dynamical effects on moving ions, new conditions 
for the existence of bound states may arise.

To study this possibility I have extended the analysis to the case of moving 
ions, applying in this case the extended Friedel sum rule (Lifschitz and Arista, 
1998) as a new constraining condition to determine in a self-consistent way the 
values of a for each type of potential, as a function of the proton velocity v, i.e. 
a = a(v).

The values of a obtained from these adjustments are shown in Figure 5, for 
rs = 2, corresponding to typical electron densities in metals. The results show two 
clear regimes: a low-energy range (v < vF) where a is basically constant, and a 
high-velocity range where it drops quite rapidly (dynamical screening regime); the 
asymptotic behavior for the Yukawa potential is of the form a ~ a»p/v. Using the 
values of a(v) so determined, and the previous results for the binding energy as a 
function of a (Figure 2) we finally determine the binding energies as a function of 
velocity for the three potential models. The results are shown in Figure 6. We note 
that, in spite of the a priori independence of the three potential models (note in 
particular the differences in the values in Figure 5) the final results for the binding 
energies show a remarkably close agreement. The reason for this agreement lies 
in the use of the Friedel sum rule to adjust in a self-consistent way the three 
potentials.
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Figure 5. Values of the screening constant a versus proton velocity v for the three model potentials 
considered in the text, for a typical electron density in metals corresponding to rs = 2. The solid 
symbols show the values of a>p/v.

Figure 6. Binding energy of an electron state around a moving proton as a function of proton 
velocity v for the three potential models indicated in the text, for an electron density corresponding 
to rs = 2. Bound states appear for velocities larger than about 1 a.u. For high velocities the binding 
energy converges to the normal value for the hydrogen atom, Eq = —0.5 a.u.
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Figure 7. Values of the potentials (part a), and corresponding screening densities (part b) for the 
three potential models (Hydrogenic, Hulthén and Yukawa), with screening constants a adjusted by 
the extended Friedel sum rule method as discussed in the text.
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For further illustration, Figure 7 shows the values of the potentials (part a), 
and the corresponding screening densities (part b) for the three adjusted potentials 
indicated before (with the c/-values determined by the extended Friedel sum rule). 
Also included in this figure is the normal electron density for the free hydrogen 
atom (reduced by a factor 0.5). One observes a remarkably close agreement be
tween the three potentials (as a result of the adjustment made by the extended 
Friedel sum rule); second, the screening cloud is much more spread than the 
normal density of the hydrogen atom; this is a dynamical effect on the screening 
charge. Of course the present results yield only a spherically averaged view of the 
screening phenomenon but they are still useful for illustrative purposes.

Similar calculations for slow ions (v < up) show that the screening densities 
become similar to the normal hydrogen density (although in these calculations 
they represent the density of free electrons undergoing scattering). Under these 
conditions, the corresponding phase shifts and stopping coefficients obtained with 
the different models are also expected to be quite similar (see Lifschitz and Arista, 
1998, for specific calculations).

The conclusion drawn from these calculations is that slow protons in metals 
behave as free particles dressed by a screening cloud of conduction electrons; this 
conclusion is backed by full size band structure calculations as indicated earlier 
(Vargas et al., 1986; Vargas and Christensen, 1987). At higher velocities (v > up) 
bound states appear, and at the same time the coupling between the projectile and 
the target weakens, so that a good approximation may be to consider a base of 
states composed by the separate projectile and free-electron-gas wavefunctions (in 
the sense of the zero-order approximation of time-dependent perturbation theory), 
and then calculate the transition probabilities corresponding to capture and loss 
processes (Cross, 1977; Lakits et al., 1990; Alducin et al., 2003).

2.1. Experimental Evidences: Positrons, Positive Muons and 
Pions

According to the previous analysis, no bound states of protons in metals would be 
expected for velocities smaller than about one atomic unit. In principle, it might be 
expected that the energy loss of slow protons would yield information to confirm 
this. However, the theoretical evaluation of stopping powers at low energies is 
not currently as accurate as it is at high energies (in the perturbative regime) and 
so it seems that for the moment it cannot provide a final test of this point (for 
instance, the best available calculations using density functional theory for pro
tons and helium ions do not show a very satisfactory agreement with experiments 
(Martinez-Tamayo et al., 1996).
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Figure 8. Angular-correlation distribution of gamma rays corresponding to positronium annihila
tion in crystalline quartz (experiment by Berko et al., 1977).

But there are other experimental methods that are more sensitive to the 
electronic environment around an impurity ion and could provide more conclu
sive information on the charge state problem. In particular, such is the case of 
experiments done with positrons and positive muons or pions.

Experiments on positron annihilation in solids reveal a sharp distinction be
tween metals and semiconductors or insulators (West, 1973, 1974; Brandt and 
Dupasquier, 1983). Figures 8 and 9 show two typical spectra (Berko et al., 1977) 
of angular correlations between the two gamma rays (emerging in opposite di
rections) produced by the annihilation of individual positrons in solids. In these 
experiments the positrons, coming from an external source, are completely slowed 
down and approach thermal equilibrium with the lattice before annihilating 
(Brandt and Arista, 1982). Figure 8 corresponds to an insulator (a quartz crystal) 
while Figure 9 is for a metal (Al, with rs = 2.07). The prominent and narrow 
peak observed in Figure 8 is explained by the mechanism of electron capture 
(positronium formation) prior to annihilation; here the angular width corresponds 
to the momentum distribution of the positronium wavefunction (the small periodic 
crispations are produced by the effects of the lattice on this wavefunction). By 
contrast, the wider shape in Figure 9 corresponds to the spectrum of positron an-
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Figure 9. Angular-correlation distribution of gamma rays corresponding to the annihilation of free 
positrons in aluminum (experiment by Berko et al., 1977).

nihilation in metals; this result is representative of similar spectra found for other 
metals (Donaghy and Stewart, 1967a, 1967b; Stewart et al., 1962; West, 1973, 
1974). In this case the width of the angular distribution is directly related to the 
radius of the Fermi sphere, indicating that the positron does not capture an electron 
but annihilates as a free particle with the conduction electrons of the metal. The 
usual explanation given to this different behavior is that positrons cannot bind 
electrons in metals due to the strong screening produced by free electrons (West, 
1973, 1974; Brandt and Dupasquier, 1983).

It could be argued that these results do not apply directly to protons due to 
the significant mass difference (in fact, the relevant parameter is the reduced 
mass of the system which is only affected by a factor 1/2). Hence we may turn 
to consider additional evidences arising from experiments on spin rotation and 
relaxation of positive muons and pions stopped in different materials (Patterson, 
1988; Morenzoni, 1992; Morenzoni et al., 2002; Major et al., 1992). The evi
dence arising from these experiments is fully consistent with the previous picture 
of positrons: in the case of metals the muons/pions decay (by positron/muon 
emission) as free particles, whereas in the case of insulators, semiconductors, or 
organic materials, they capture an electron, forming a stable bound state, before 
decaying. Also, the charge distribution around muons in interstitial positions in 
Ni and other metals, measured by the intensity of the hyperfine field, demon
strated a strong screening of muons by conduction electrons, but not a bound 
state (Vargas and Christensen, 1987). The explanation of the different behavior 
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between metals and non-metals is, as in the case of positrons, based on the strong 
screening effect that avoids the formation of bound states in metals.

2.2. Discussion

As illustrated, there is a consistent explanation of the behavior of positrons and 
positive pions and muons in the different types of solids, irrespective of the dif
ferent masses between these particles. Thus, one would expect a similar behavior 
in the case of slow protons. The closest comparison is of course between protons 
and positive muons/pions.

The theoretical analysis provides physical arguments to expect that no bound 
states would be formed for velocities below the Fermi velocity in metals. There is 
no consensus on this point in the ion-beam community, but it should be noted that 
it is in agreement with all the experimental evidence coming from positron, muon 
and pion experiments.

According to this view, the physical picture of the behavior of protons in solids 
would be the following.

(a) Metals: one may distinguish two ranges:

(i) for v < vF: bound states are not formed (except perhaps for high- 
rs materials) and the protons propagate through the lattice as strongly 
screened ions;

(ii) for v > vp: bound states appear and a collisional equilibrium between 
H° and H+, determined by capture and loss processes, is established. 
The neutral and negative fractions observed when slow (1-20 keV) 
hydrogen beams emerge from metals may be explained by electron 
capture processes taking place at the exit surface (Bhattacharya et al., 
1980; Verbeek et al., 1980).

(b) Insulators, semiconductors and organic materials: here an equilibrium be
tween H° and H+ is expected at all energies (with a predominant fraction of 
H° at low energies).

While for the moment a complete theoretical proof of this picture cannot be given 
(a full size theoretical model would require self-consistent many-body calcula
tions including non-linear screening plus dynamical and lattice-potential effects), 
we may note that it is consistent with all the existing experimental evidences cited 
before.
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3. Heavy Ions

The question of the charge states of heavy ions in solids is one of the main prob
lems in trying to achieve a definitive theoretical framework for the evaluation 
of ion stopping and ranges. As in the case of light ions, one common difficulty 
is the fact that measurements of the charge states of ions emerging from solid 
targets provide only indirect information on the internal charge state distributions. 
Yet, alternative methods to measure the equilibrium charge state of ions in solids 
(Della-Negra et al., 1987) may yield useful information in this respect.

There are extensive experimental studies that provide detailed informa
tion on the charge state distributions (Shima et al., 1986, 1992), as well 
as convenient empirical fittings to the data (Nikolaev and Dmitriev, 1968; 
Schiwietz and Grande, 2001). But the question of charge states of ions moving 
within a solid was for many years an open issue. In particular we may note the old 
controversy between two models that has remained open through the years: the 
Bohr-Lindhard (BL) (1954) and the Betz-Grodzins (BG) models (Betz, 1972).

The BL model considers that the fast sequence of collisions experienced by 
the ion within a solid produces an enhancement in the excitation and ionization 
probabilities, leading to an increased equilibrium charge. The effect of the passage 
through the surface, in the case of swift ions, is not considered to be very relevant, 
due to the high velocity condition, and so the mean exit charge <ÿeXit is expected to 
be close to the mean charge q inside the solid. Instead, the BG model considers 
that the effect of repeated collisions within the solid produces ions with several 
excited electrons in outer shells, but those electrons remain mostly attached to 
the ion until it emerges into vacuum; after this, the ion would decay by emitting 
electrons via Auger processes. According to this model, the mean charge states q 
of the ion inside the solid should be significantly smaller than the exit values <ÿeXit- 
A detailed discussion of this problem within the context of non-linear calculations 
of the energy loss has been given recently (Lifschitz and Arista, 2004); the results 
of this study show a disagreement with the BG model and provide a plausible 
explanation to the old controversy.

It may be noted that the BG model was initially inspired in the apparent lack 
of gas-solid differences in the energy loss values, which was associated to similar 
values of charge states. However, small gas-solid differences in the stopping were 
found later on by Geissel et al. (1982), whereas, on the other hand, the Auger 
electrons predicted by the BG model were not found.

The study of the charge states of ions moving in solids is thus a fundamental 
aspect in the field of ion-solid interactions. An important problem in this respect is 
the wide discrepancy among the values assumed in different places. An example
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Figure 10. (a) Different approaches to the mean charge of ions in solids. Curves ND and SG: fitting 
values to the mean charge of ions emerging from solid foils according to Nikolaev and Dmitriev 
(ND) and Schiwietz and Grande (SG) respectively; BK: ion charge values calculated by Brandt 
(1975) and used in the Brandt-Kitagawa model; ZBL: recommended values by Ziegler et al. (ZBL) 
(1985) obtained by fitting stopping power values with the BK model, (b) Difference between the 
mean exit charge <?exit (represented by the empirical SG values), and the average ionization values 
by Ziegler et al. <7ZBL, f°r various atomic numbers, as a function of ion energy.
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of the most frequent assumptions is shown in Figure 10. Part (a) of this figure 
shows the fitting expressions to the mean charge of ions emerging from a solid foil 
obtained by Nikolaev-Dmitriev (ND) and Schiwietz-Grande (SG), the g-values 
of the Brandt-Kitagawa (BK) model (Brandt, 1975; Brandt and Kitagawa, 1982), 
and the expression for the “ionization” values given by Ziegler et al. (ZBL) 
(Ziegler et al., 1985). The BK model calculates the mean ion charge using a pre
vious model by Brandt (1975) based on the velocity-stripping criterion by Bohr 
and assuming a Thomas-Fermi model for the electron velocities in the atom. The 
ZBL formula is the result of a large number of fittings based on the BK model 
for heavy ions scaled to equal-velocity proton values. As observed in the figure, 
large discrepancies arise for heavy ions. Part (b) of this figure shows the difference 
between the mean charge values measured at the exit of solid foils and the charge 
values recommended in the ZBL approach. As observed, very large differences 
arise for heavy ions on a wide range of energies below and over 1 MeV/u. Hence, 
this range of energies is of central interest for the present analysis.

The purpose of the following is to try different stopping models, together 
with different t?-values, in order to analyze some basic differences dealing with 
linear versus non-linear approaches, and finally, to discuss the origin of these 
discrepancies.

First, I will briefly recall the calculation of the stopping power for 
dressed ions according to the dielectric function formulation (Lindhard, 1954; 
Ferrell and Ritchie, 1977; Brandt and Kitagawa, 1982). The energy loss in this 
case is given in terms of the dielectric function e(k, co) by the expression

(2)

where f(k) is the ion form factor, which is calculated from the Fourier transform 
of the ion-charge density pjon(r), by

f(k) = y J3r e'*'rpion(r).
(3)

In particular, in the BK model f(k) may be expressed analytically, for any ion 
charge q and atomic number Zi, by

/bkGO = Zj
q/Z\ k2A2

1 +FA2
(4)

where A is the screening radius of the ion (which depends also on q and Z\). In 
the simplest case of bare nuclei, f(k) = Z|.

The use of a dielectric description, as well as the use of a free electron gas 
picture, is more adequate to deal with the excitation of conduction electrons in
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Figure 11. Calculations of stopping cross sections for Cl ions in carbon using linear and non-linear 
models. Curves a and b: dielectric calculations corresponding to the following assumptions on 
the ion charge: (a) empirical values by Schiwietz-Grande (SG), (b) Brandt statistical-ion model 
(Brandt, 1975). The two blue curves denoted NL are the results of the non-linear calculations 
using the SG values of ion charges, considering only the electron gas contribution (dashed line) 
and including K-shell ionization (continuous line). The solid symbols are experimental values 
(Boot and Grant, 1965; Paul, 2006).

metals or valence electrons in semiconductors. A more comprehensive scheme 
may be built using a description in terms of Mermin functions derived from optical 
data and including also inner shells (Abril et al., 1998). The present calculations 
will be restricted to a carbon target where the dominant energy loss is produced 
by the excitation of valence electrons, and the contribution of the K-shell may be 
included as a separate correction.

The calculations were made using the dielectric function obtained by 
(Lindhard, 1954) for the free electron gas. To integrate Equation (2) according 
to this formulation one must separate the contributions of plasmon (given by a 
line integral) and single particle excitations. The numerical method was described 
in a previous publication (Arista, 1978).

Results of these calculations are shown in Figures 11 and 12, for Cl and 
Ni ions in carbon foils (rs = 1.6). The figures show the results of the linear 
(dielectric) formulation and of the non-linear quantal calculations considering 
different ion charge values. The curves denoted a and b are dielectric calcu-



614 N.R. Arista MfM 52

Figure 12. Same as in Figure 11 for Ni ions in carbon; the solid symbols are empirical values 
according to the fitting by Konac et al. (1998).

lations corresponding to the following assumptions on the equilibrium charge 
states q of the ions: (a) empirical values by Schiwietz and Grande (2001) (de
rived from experiments with emerging ion beams), (b) Brandt statistical-ion 
model (Brandt, 1975; Brandtand Kitagawa, 1982). The curves denoted NL are 
the results of non-linear calculations based on the extended Friedel sum rule ac
cording to the method described in Arista (2002) and using the Schiwietz-Grande 
values of ion charges (Schiwietz and Grande, 2001). This method is fully non- 
perturbative and based on numerical integrations of the Schrôdinger equation for 
the scattering of electrons by the field of the moving ion. A correction due to K- 
shell ionization has been included in the non-linear calculations following Arista 
(2002) and Arista and Lifschitz (2004) yielding the result indicated by the solid 
blue line. The solid symbols are experimental values from Boot and Grant (1965) 
and Paul (2006).

As it may be observed, the calculations based on the linear formulation 
overestimate the values of the stopping power. The reason for this behavior is 
simple: the basic assumption of the dielectric approach is the linear response 
of the medium, which produces a quadratic dependence of the stopping power 
on the ion form factor f(q), Equation (2), and is the same reason why the 
stopping of bare ions in the Bethe model increases with Zf. In the case of 
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heavy ions this produces a significant overestimation of the energy transfer to the 
medium. A more realistic description, such as the non-linear method for heavy 
ions (Arista, 2002; Arista and Lifschitz, 2004), takes into account the effect of 
“saturation” in the energy transfer. In the ZBL method, the values of q are fitted to 
the experiments by a calculation procedure that is based on the BK model; in this 
way it compensates the intrinsic overestimation of the linear approach by using 
a reduced value of q. Instead, the non-linear calculation shows a good agreement 
with the experiments when the SG values of q are used. Conversely, if the non
linear calculations were made using the ZBL values for q the results would be too 
low (Arista and Lifschitz, 2004).

It may be noted that other non-perturbative methods (Grande and Schiwietz, 
1993, 2002; Maynard et al., 2000, 2002; Sigmund and Schinner, 2000, 2002) may 
be used to obtain appropriate stopping power values in this energy range, although 
the present aim is not to perform a fine test of stopping evaluation methods but to 
illustrate the relevance of charge state assumptions on these calculations.

Another illustrative comparison is made in Figure 13 which shows the cal
culated values of the stopping cross sections for a fixed ion velocity (v = 10 
a.u.) as a function of the atomic number Z\ (which may be thought of as rep
resenting the interaction strength). Calculations using the two referred methods 
are included. The letter L here refers to linear calculations (using the described 
approach, Equations (2 4)) for two different ion charge values: the empirical SG 
values (<?sg) (Schiwietz and Grande, 2001 ) and the Brandt model (^Brandt )• The NL 
curves correspond to the non-linear calculations according to the method of Arista 
(2002) and Arista and Lifschitz (2004)); curve (a) corresponds to the stopping 
power of a free electron gas (FEG) for the case q = qsG, while curve (b) includes 
the contribution due to K-shell ionization. The additional curve (c) is the result 
of stopping calculations with the non-linear method using the heavy-ion charge 
model by Brandt (^Brandt)- The data symbols are the fittings to experimental values 
according to Konac et al. (1998) and Hubert et al. (1990). A good agreement be
tween the non-linear calculations (curve (b)) and the empirical values is observed 
for atomic numbers below 50, but for higher Z\ an increasing discrepancy is 
observed. This behavior was also observed in previous calculations and probably 
indicates a deficiency in the ion-potential model (a modified Molière potential) 
for the heaviest ions (Arista, 2002). We note also a fair agreement between the 
non-linear curve (a) and the linear calculation using q = <7 Brandt- However, a 
significant disagreement (which grows with Zj) is observed between the non
linear calculations corresponding to q$G and ^Brandt (curves (a) and (c)). This is a 
consequence of the important differences in the ion charge values already noted in
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Figure 13. Calculated and empirical values of stopping cross sections for a fixed ion velocity 
(v = 10 a.u.) as a function of the atomic number Z\. Letter L denotes linear calculations (dielectric 
approach) for two different ion charge values: the empirical values by Schiwietz and Grande (<?sg), 
and the values of the Brandt model (^Brandt)- The solid lines are the non-linear (NL) calculations 
described in the text: curve (a) corresponds to the stopping power of a free electron gas (FEG) for 
the case q = q$Q, curve (b) includes the contribution to the energy loss due to K-shell ionization, 
and curve (c) is the result of non-linear calculations using the ion charge model proposed by Brandt 
(q = «/Brandt)- The data symbols are the fittings to experimental values using the approaches by 
Konac et al. (1998) and Hubert et al. (1990).

Figures 10a and 10b. A similar disagreement was found in previous calculations 
when the ZBL values for q were used (Arista and Lifschitz, 2004).

The fact that the NL results in these figures are in reasonably good agreement 
with the experiments suggests that the approximation of the ion charge inside 
the solid by the value of the corresponding emerging ion charge is fairly good (al
though a difference of a few units of charge, but much smaller than the differences 
shown in Figure 10b, may not be excluded). In this way the results of the non
linear approach show a disagreement with the Betz, Brandt and ZBL models of ion 
charge, being instead compatible with the BL model (Lifschitz and Arista, 2004).
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Figure 14. Illustrative calculations of stopping power ratios, shown as [S(Zj )/*S'proton 11 where 
S(Z| ) and ^proton are the stopping powers of ions and protons at the same velocity, v = 5 a.u. The 
present calculations correspond to fully charged (<? = Zj) and half-charged (ç = Z|/2) ions, using 
the linear (dashed lines) and non-linear (continuous lines) methods described in the text.

3.1. Saturation Effects in the Energy Loss

As already mentioned, a very basic difference between linear and non-linear 
approaches for swift heavy ions is the possibility - in the non-linear ap
proach - of accounting for the saturation effect in the energy loss (Arista, 2002; 
Arista and Lifschitz, 2004). This effect arises from a more complete description 
that includes the effects of higher-order terms in the interaction.

To illustrate this effect I include in Figure 14 various simplified calculations 
assuming frozen ion charges: full charge (q = Zj) and half charge (q = Z\/2), ac
cording to the linear (dashed lines) and non-linear (continuous lines) models. Here 
the results are plotted in the form of “effective charge ratios”: [S(Zi)/Sproton]l/2, 
where S(Z|)/5proton is the ratio of the corresponding ion and proton stoppings 
for the same velocity. Clearly the linear calculation for q = Z] yields a straight 
line (S ex Z[ behavior). The non-linear results show a more moderate increase 
with ion charge in both cases. It should be noted that in most of this range the 
interaction parameter q = Z\e2/hv is larger than 1, and therefore in the case of 
bare ions the behavior of the non-linear calculations may be well explained by a 
simple estimation based on the Bloch approximation. Thus, in the case of bare 
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ions the effect of saturation in the energy loss is already contained in the Bloch 
formula. The main new feature of the non-linear approach is that in contains both 
Bloch and Barkas corrections for dressed ions.

4. Summary

The question of charge states of light and heavy ions in solids remains being one 
of the most challenging problems in the field of ion-solid interactions. Two main 
difficulties combine to make this question a very tough one both from experimen
tal and theoretical sides. The main experimental problem lies in the impossibility 
of obtaining precise values of the charge states of the ions inside the solid, at 
least from the conventional type of experiments using ion beams, so that one has 
to rely on indirect or external evidences. In the case of protons there are some 
alternative sources of information using subatomic particles, which consistently 
produce a rather well defined picture separating the cases of metallic and non- 
metallic materials. In the case of metals, the evidences support Brandt’s conjecture 
in a more restricted sense: slow protons, as well as other positive point particles, 
would not bind electrons due to the strong screening conditions imposed by the 
metallic environment and so the protons remain as free but strongly screened ions. 
However, when the proton velocity increases the screening weakens and hydro- 
genic bound states appear. On the other hand, in the case of non-metallic materials, 
the screening is lower, and so it allows the existence of both free protons as well as 
neutral hydrogen atoms at all velocities, with corresponding charge state fractions 
determined by capture and loss processes.

Heavy ions are in principle still more complicated systems due to the much 
larger number of possible charge states and corresponding capture and loss 
processes that may take place (Echenique et al., 1990). A complete theoretical 
analysis of charge equilibrium and charge state fractions is a highly complicated 
issue since the cross section values for the elementary processes are not precisely 
known, having to deal in most cases with only rough estimations. The experimen
tal side of this question is much more evolved; in particular, there are extensive 
sets of measurements of charge state distributions and mean values (gexit) for 
ions emerging from solid foils (Shima et al., 1986, 1992). An important ques
tion that arises from these studies is the striking difference that may be found in 
some cases between these experimental values and those of the ion charges used 
in some phenomenological approaches and computer codes. The origin of this 
problem has been clarified by the recent calculations based on non-perturbative 
approaches (Arista, 2002; Arista and Lifschitz, 2004; Lifschitz and Arista, 2004). 
A very important difference between linear (or perturbative) and non-linear 



MfM 52 Charge States and Energy Loss 619

(non-perturbative) methods is the absence of saturation effects (Bloch type of 
corrections) in the former case, which tends to enhance the stopping power values 
calculated with the linear/perturbative approach. This deficiency has been com
pensated in a heuristic way in the past by using comparatively lower values of 
ionization charges (like in the ZBL approach). It should be stressed that these 
values do not physically represent the real charge of ions travelling through a 
solid, and it follows that the use of these values in a different context may lead to 
erroneous results.

It should be noted that the question of slow heavy ions has not been included 
in this analysis. The most appropriate methods currently available for electronic 
energy loss calculations appear to be those based on density functional theory 
(for metallic targets) or alternative quantum methods. There are also a few recent 
calculations that describe changes in the electronic energy loss of slow ions due 
to inner-shell vacancies (Juaristi and Arnau, 1996; Juaristi et al., 1999).

The areas of ion charge states in solids and related energy loss processes still 
offer many open questions to be clarified from the theoretical point of view. 
Among these, an accurate theoretical treatment of capture and loss processes is 
one of the most challenging issues. A quantitative description of these processes 
may be the key to access the problem of charge state distributions and charge 
equilibrium in solids. The use of non-perturbative methods and the inclusion of 
dynamical effects should be considered as essential requirements for future studies 
on this line.
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